105 research outputs found

    Direct Stimulation of Human Hippocampus During Verbal Associative Encoding Enhances Subsequent Memory Recollection

    Get PDF
    Previous studies have reported conflicting results regarding the effect of direct electrical stimulation of the human hippocampus on memory performance. A major function of the hippocampus is to form associations between individual elements of experience. However, the effect of direct hippocampal stimulation on associative memory remains largely inconclusive, with most evidence coming from studies employing non-invasive stimulation. Here, we therefore tested the hypothesis that direct electrical stimulation of the hippocampus specifically enhances hippocampal-dependent associative memory. To test this hypothesis, we recruited surgical patients with implanted subdural electrodes to perform a word pair memory task during which the hippocampus was stimulated. Our results indicate that stimulation of the hippocampus during encoding helped to build strong associative memories and enhanced recollection in subsequent trials. Moreover, stimulation significantly increased theta power in the lateral middle temporal cortex during successful memory encoding. Overall, our findings indicate that hippocampal stimulation positively impacts performance during a word pair memory task, suggesting that successful memory encoding involves the temporal cortex, which may act together with the hippocampus

    Movement Type Prediction before Its Onset Using Signals from Prefrontal Area: An Electrocorticography Study

    Get PDF
    Power changes in specific frequency bands are typical brain responses during motor planning or preparation. Many studies have demonstrated that, in addition to the premotor, supplementary motor, and primary sensorimotor areas, the prefrontal area contributes to generating such responses. However, most brain-computer interface (BCI) studies have focused on the primary sensorimotor area and have estimated movements using postonset period brain signals. Our aim was to determine whether the prefrontal area could contribute to the prediction of voluntary movement types before movement onset. In our study, electrocorticography (ECoG) was recorded from six epilepsy patients while performing two self-paced tasks: hand grasping and elbow flexion. The prefrontal area was sufficient to allow classification of different movements through the area's premovement signals (-2.0 s to 0 s) in four subjects. The most pronounced power difference frequency band was the beta band (13-30Hz). The movement prediction rate during single trial estimation averaged 74% across the six subjects. Our results suggest that premovement signals in the prefrontal area are useful in distinguishing different movement tasks and that the beta band is the most informative for prediction of movement type before movement onset.open

    A study on decoding models for the reconstruction of hand trajectories from the human magnetoencephalography

    Get PDF
    Decoding neural signals into control outputs has been a key to the development of brain-computer interfaces (BCIs). While many studies have identified neural correlates of kinematics or applied advanced machine learning algorithms to improve decoding performance, relatively less attention has been paid to optimal design of decoding models. For generating continuous movements from neural activity, design of decoding models should address how to incorporate movement dynamics into models and how to select a model given specific BCI objectives. Considering nonlinear and independent speed characteristics, we propose a hybrid Kalman filter to decode the hand direction and speed independently. We also investigate changes in performance of different decoding models (the linear and Kalman filters) when they predict reaching movements only or predict both reach and rest. Our offline study on human magnetoencephalography (MEG) during point-to-point arm movements shows that the performance of the linear filter or the Kalman filter is affected by including resting states for training and predicting movements. However, the hybrid Kalman filter consistently outperforms others regardless of movement states. The results demonstrate that better design of decoding models is achieved by incorporating movement dynamics into modeling or selecting a model according to decoding objectives.open0

    Formation of visual memories controlled by gamma power phase-locked to alpha oscillations

    Get PDF
    Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity

    Magnetoencephalography in Pediatric Lesional Epilepsy Surgery

    Get PDF
    This study was performed to assess the usefulness of magnetoencephalography (MEG) as a presurgical evaluation modality in Korean pediatric patients with lesional localization-related epilepsy. The medical records and MEG findings of 13 pediatric patients (6 boys and 7 girls) with localization-related epilepsy, who underwent epilepsy surgery at Seoul National University Children's Hospital, were retrospectively reviewed. The hemispheric concordance rate was 100% (13/13 patients). The lobar or regional concordance rate was 77% (10/13 patients). In most cases, the MEG spike sources were clustered in the proximity of the lesion, either at one side of the margin (nine patients) or around the lesion (one patient); clustered spike sources were distant from the lesion in one patient. Among the patients with clustered spike sources near the lesion, further extensions (three patients) and distal scatters (three patients) were also observed. MEG spike sources were well lateralized and localized even in two patients without focal epileptiform discharges in the interictal scalp electroencephalography. Ten patients (77%) achieved Engel class I postsurgical seizure outcome. It is suggested that MEG is a safe and useful presurgical evaluation modality in pediatric patients with lesion localization-related epilepsy

    Discrimination of Timbre in Early Auditory Responses of the Human Brain

    Get PDF
    The issue of how differences in timbre are represented in the neural response still has not been well addressed, particularly with regard to the relevant brain mechanisms. Here we employ phasing and clipping of tones to produce auditory stimuli differing to describe the multidimensional nature of timbre. We investigated the auditory response and sensory gating as well, using by magnetoencephalography (MEG).Thirty-five healthy subjects without hearing deficit participated in the experiments. Two different or same tones in timbre were presented through conditioning (S1) – testing (S2) paradigm as a pair with an interval of 500 ms. As a result, the magnitudes of auditory M50 and M100 responses were different with timbre in both hemispheres. This result might support that timbre, at least by phasing and clipping, is discriminated in the auditory early processing. The second response in a pair affected by S1 in the consecutive stimuli occurred in M100 of the left hemisphere, whereas both M50 and M100 responses to S2 only in the right hemisphere reflected whether two stimuli in a pair were the same or not. Both M50 and M100 magnitudes were different with the presenting order (S1 vs. S2) for both same and different conditions in the both hemispheres.Our results demonstrate that the auditory response depends on timbre characteristics. Moreover, it was revealed that the auditory sensory gating is determined not by the stimulus that directly evokes the response, but rather by whether or not the two stimuli are identical in timbre

    Robust source analysis of oscillatory motor cortex activity with inherently variable phase delay

    No full text
    This study evaluated quantitatively the synchronization between the magnetoencephalography (MEG) and electromyography (EMG) signals and developed a novel method for the determination of the synchronization in order to increase the reliability of the source analysis of the oscillatory motor cortex activity. The new method is based on our observation that there are large variances in the time lag due to relatively low muscle-cortex synchronization which reduces the signal-to-noise ratio of the MEG signal when averaged in direct synchrony with the rectified EMG peaks. To improve the localization of the motor cortex activity, time-frequency analysis was performed for each epoch coinciding with an EMG peak to reject the weak oscillatory activity and artifacts. In addition, the MEG signals were shifted to maximize the coherence between MEG and rectified EMG by determining for each accepted epoch the time lag resulting in a maximum cross-correlation. An experiment was carried out using 30 subjects in order to determine the applicability of this method to a real situation. The synchronization and the results of the corresponding source analysis based on the novel method were compared with the data obtained using the non-phase-shift method and Hilbert approach detecting EMG phase. The results showed that the synchronization was significantly enhanced and the signal-to-noise ratio of the MEG signals improved, and that the localized dipoles of all subjects were well clustered at the motor cortex. This method, based on shifting the MEG epochs according to the simultaneously measured time lag, considerably improves the performance of the averaging and localization of the rhythmic activity of the motor cortex

    Language lateralization using MEG beta frequency desynchronization during auditory oddball stimulation with one-syllable words

    No full text
    Some patients with epilepsy have difficulty performing complex language tasks due to the long duration of the disease and cognitive side effects of antiepileptic drugs. Therefore, a simple passive paradigm would be useful for determining the language dominance lateralization in epilepsy patients. The goal of this study was to develop an efficient and non-invasive analysis method for determining language dominance in epilepsy patients. To this end, magnetoencephalography was performed while an auditory stimulus sequence comprised of two one-syllable spoken words was presented to 17 subjects in an oddball paradigm without subject response. The time-frequency difference between deviant and standard sounds was then analyzed in the source space using a spatial filtering method that was based on minimum-norm estimation. The laterality index was estimated in language-related regions of interest (ROI). The results were compared to the traditional lateralization method using the Wada test. Beta band oscillation activity decreased during deviant stimulation, and the lateralization of the decrease was in good agreement with the Wada test, in the posterior part of the inferior frontal gyrus in 94% of the subjects and in the posterior part of the superior temporal gyrus in 71% of the subjects. In conclusion, the ROI-based time-frequency difference between deviant and standard sounds can be used to assess language lateralization in accordance with the Wada test.This research was jointly supported by a grant (M103KV- 010017-08K2201-01710) from Brain Research Center of the 21st Century Frontier Research Program and Engineering Foundation (KOSEF) grant (M10644000009-06N4400-00900) funded by the Ministry of Science and Technology and the Korea Science, the Republic of Korea
    corecore